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PREFACE

This research is sponsored by the Defense Advanced Research Projects Agency (DARPA),
1400 Wilson Boulevard, Arlington, Virginia 22209-2308 and monitored by the U.S. Army
Topographic Engineering Center (TEC), Fort Belvoir, Virginia 22060-5546, under Contract
DACA76-85-C-0004, by SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025-
3493. The Contracting Officer’s Representative was Mr. George Lukes.




1 INTRODUCTION

SRI International is pleased to present this final report under contract DACAT6-
85-C-0004 to the Defense Advanced Research Projects Agency and the U.S. Army
Engineer Topographic Laboratories. The goal of this research was to provide the
technology to produce systems that can automatically model a complex physical
environment (e.g., natural terrain) based on data from imaging sensors and previously
stored knowledge. Requirements for such a system typically include the need for
real-time interpretation and extreme reliability; e.g., if the perception system for an
autonomous robot makes even one serious mistake in an extended mission, or cannot
provide needed information fast enough, the robot could be disabled or destroyed.

The requirements for speed and reliability cannot be satisfied by simple exten-
sions of existing technology. Stand-alone algorithms in which all needed knowledge is
compiled into a sequence of instructions cannot be made robust enough to achieve the
desired reliability goals; such algorithms must be replaced by more highly integrated
systems with reasoning methods that can use significant amounts of knowledge, at
least some of which is stored in declarative form. The need to operate in complex
natural environments poses the corresponding requirement to develop new representa-
tions that go beyond the simple analytic descriptions adequate for the smooth surfaces
characteristic of low-resolution aerial imagery, or of manufactured or cultural objects:
correspondingly, serial computer architectures must be replaced by parallel hardware
and corresponding algorithmic techniques to satisfy speed requirements.

We identified five technical areas in which advances were necessary to build a
vision system that could satisfy required competence, speed, and reliability criteria
in modeling complex natural environments.

o Development of a Core Knowledge Structure, which can serve as an integrating
mechanism, and can store both the prior knowledge and the environmental
models to be compiled from sensor data

o Development of Compact Representations for Natural Scenes, which can be used
to render the described scenes realistically, can permit interactive or automatic
three-dimensional model construction from symbolic data, and can be used by
automatic recognition techniques in performing the sensor data interpretation
task

o Development of Terrain Modeling Techniques, which can compile a descrip-
tion of natural terrain, from both range and intensity imaging sensors moving
through some area of interest

o Development of Object Recognition Techniques, which can use stored descrip-
tions to identify both cultural and natural objects in range and intensity data




¢ Development of an Integrated Demonstration System, which can be used to
demonstrate and evaluate both the overall system concept and the component
technology

In Sections 2 and 3 of this report we describe our accomplishments in these areas. The
papers in the appendices cover some of our work in the above areas in more depth.
In Section 4 we describe the evaluation and enhancement of our stereo techniques for
application to ground-level data.
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2 OBJECT RECOGNITION IN THE OUTDOOR
WORLD

The natural outdoor environment poses significant obstacles to the design and
successful integration of the interpretation, planning, navigational, and control func-
tions of a general-purpose vision system. Many of these functions cannot yet be
performed at a level of competence and reliability adequate to satisfy the needs of
an autonomous robotic device. Part of the problem lies in the inability of current
techniques, especially those involved in sensory interpretation, to use contextual in-
formation and stored knowledge in recognizing objects and environmental features.
One of our goals in this effort was to design a core knowledge structure (CKS) that
can support a new generation of knowledge-based generic vision systems. A second
goal was to construct a vision system that employs the CKS, and has the competence
to recognize objects appearing in ground-level imagery of natural outdoor scenes.

2.1 Core Knowledge System

The CKS is an object-oriented knowledge database that was originally designed
to serve as the central information manager for a perceptual system [Smith&Strat87,
Strat&Smith88]. The following facilities of the CKS are of particular importance in
supporting the object recognition task.

Multiple Resolution in Space and Knowledge. The CKS employs a multires-
olution octree to locate objects only as precisely as warranted by the data. Similarly,
a collection of geometric modeling primitives are available to represent objects at
an appropriate level of detail. In parallel with the octree for spatial resolution is a
semantic network that represents objects at multiple levels of semantic resolution.

Inheritance and Inference. The CKS uses the semantic network to perform
some limited types of inference that ease the burden of querying the data store. Thus.
query responses are assembled not only from those objects that syntactically match
the query, but also from objects that can be inferred to match, given the relations
encoded in the semantic network. Spatial inference is provided based on geometric
constraints computed by the octree manipulation routines.

Conflicting Data. One of the realities of analyzing imagery of the real world is
that conflicts will result from mistakes in interpretation and from unnoticed changes
in the world. The CKS treats all incoming data as the opinions of the data sources,
so logical inconsistencies will not corrupt the database. Similarly, values derived
through multiple inheritance paths are treated as multiple opinions. This strategy
has several advantages and disadvantages. Rather than fusing information as it arises,
the CKS has the option of postponing combination until its resuits are needed. This
means that the fusion can be performed on the basis of additional information that
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may become available, and in a manner that depends on the immediate task at
hand. Some information may never be needed, in which case the CKS may forego
its combination entirely. The disadvantages are the need to store a larger quantity of
data and a slowed response at retrieval time. For an object recognition system like
Condor (described below), the CKS seems to provide the right tradeoff.

2.2 Condor: A Contextual Vision System Built on the CKS

Much of the progress that has been made to date in machine vision has been based,
almost exclusively, on shape comparison and classification employing locally measur-
able attributes of the imaged objects (e.g., color and texture). Natural objects viewed
under realistic conditions do not have uniform shapes that can be matched against
stored prototypes, and their local surface properties are too variable to be unique de-
terminers of identity. The standard machine vision recognition paradigms fail to pro-
vide a means for reliably recognizing any of the object classes common to the natural
outdoor world (e.g., trees, bushes, rocks, and rivers). In this effort [Strat&Fischler91,
Appendix A], we have devised a new paradigm that explicitly invokes context and
stored knowledge to control the complexity of the decision-making processes involved
in correctly identifying natural objects and describing natural scenes.

The conceptual architecture of the system we describe, called Condor (for context-
driven object recognition), is much like that of a production system; there are many
computational processes interacting through a shared data structure. Interpretation
of an image involves the following four process types.

¢ Candidate generation (hypothesis generation)
e Candidate comparison (hypothesis evaluation)
o Clique formation (grouping mutually consistent hypotheses)

e Clique selection (selection of a “best” description)

Each process acts as a daemon, watching over the knowledge base and invoking
itself when its contextual requirements are satisfied. The input to the system is
an image or set of images that may include intensity, range, color, or other data
modalities. The primary output of the system is a labeled 3D model of the scene.
The labels included in the output description denote object classes that the system
has been tasked to recognize, plus others from the recognition vocabulary that happen
to be found useful during the recognition process. An object class is a category of
scene features such as sky, ground, geometric-horizon, etc.

A central component of the architecture is a special-purpose knowledge database
used for storing and providing access to knowledge about the visual world, as well
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as tentative conclusions derived during operation of the system. In Condor, these
capabilities are provided by the CKS as previously discussed.

Visual interpretation knowledge is encoded in context sets, which serve as the
uniform knowledge representation scheme used throughout the system. The invoca-
tion of all processing operations in Condor is governed by context through the use
of various types of context sets: an action is initiated only when one or more of its
~ontrolling context sets is satisfied. Thus, the actual sequence of computations, and
the labeling decisions that are made, are dictated by contextual information stored in
the CKS, by the computational state of the system, and by the image data available
for interpretation.

The customary approach to recognition in machine vision is to design an analysis
technique that is competent in as many contexts as possible. In contrast to this
tendency toward large, monolithic procedures, the strategy embodied in Condor is
to make use of a large number of relatively simple procedures. Each procedure is
competent only in some restricted context, but collectively, these procedures offer the
potential to recognize a feature in a wide range of contexts. The key to making this
strategy work is to use contextual information to predict which procedures are likely
to yield desirable results, and which are not.

Condor operates as follows. For each label in the active recognition vocabulary, all
candidate generation context sets are evaluated. The operators associated with those
candidate generation context sets that are satisfied are executed, producing candi-
dates for each class. Candidate comparison context sets that are satisfied are then
used to evaluate each candidate for a given class, and if all such evaluators prefer one
candidate over another, a preference ordering is established hetween them. These
preference relations are assembled to form partial orders over the candidates, one
partial order for each class. Next, a search for mutually coherent sets of candidates
is conducted by incrementally building cliques of consistent candidates, beginning
with empty cliques. A candidate is nominated for inclusion into a clique by choosing
one of the candidates at the top of one of the partial orders. Consistency determi-
nation context sets that are satisfied are used to test the consistency of a nominee
with candidates already in the clique. A consistent nominee is added to the clique;
an inconsistent one is removed from further consideration with that clique. Further
candidates are added to the cliques until none remain. Additional cliques are gener-
ated in a similar fashion as computational resources permit. Ultimately, one clique is
selected as the best semantic labeling of the image on the basis of the portion of the
image that is explained and the reliability of the operators that contributed to the
clique.

We have taken over 100 photographs at an experimental site in the foothills be-
hind Stanford University, most of which have so far been digitized and successfully
processed by Condor. Based on our initial experiments, and the unique architecture
of of our system, we are highly optimistic about the ability of Condor to overcome




many of the limitations with respect to object recognition inherent in traditional
machine vision paradigms.

3 OBJECT MODELING FROM MULTIPLE IM-
AGES

Our goal in this research effort was to develop automated methods for producing
a labeled three-dimensional scene model from image sequences. We view the image-
sequence approach as an important way to avoid many of the problems that hamper
conventional stereo techniques because it provides the machine with both redundant
information and new information about the scene. The redundant information can be
used to increase the precision of the data and filter out artifacts; the new information
can be used for such things as filling in model information along occlusion boundaries
and disambiguating matches in the midst of periodic structures.

We have developed two techniques for building three-dimensional descriptions
from multiple images. One is a range-based technique that builds scene models from a
sequence of range images; the second is a motion analysis technique that analyzes long
sequences of intensity images. Our approach for analyzing sequences of range images
is to provide the system with a wide variety of object and terrain representations and
an ability to judge the appropriateness of these representations for particular sets of
data. The variety of representations is required for two reasons. First, it is needed
to cover the range of object types typically found in outdoor environments. And
second, it is needed to cover the range of data resolutions obtained by a robot vehicle
exploring the environment.

In this approach to object modeling, an object description typically goes through
a sequence of representations as new data are gathered and processed. One of these
sequences might start with a crude blob description of an initially detected object,
include a detailed structural model derived from a set of high-resolution images. and
end with a semantic label based on the object’s description and the sensor system'’s
task. This evolution in representations is guided by a structure we refer to as “rep-
resentation space”: a lattice of representations that is traversed as new information
about an object becomes available. One of these representations is assc-iated with
an object only after it has been judged to be valid; we evaluate the vu..dity of an
object’s description in terms of its temporal stability. We define stability in a sta-
tistical sense augmented with a set of explanations offering reasons for missing an
object or having parameters change. These explanations can invoke many types of
knowledge, including the physics of the sensor, the performance of the segmentation
procedure, and the reliability of the matching technique. To illustrate the power of
these ideas we have implemented a system, which we call TraX, that constructs and




refines models of outdoor objects detected in sequences of range data gathered by an
unmanned ground vehicle driving cross-country [Bobick&Bolles91, Appendix B].

3.1 Building 3-D Descriptions from Image Sequences

We have developed a motion analysis technique, which we call Epipolar-Plane
Image (EPI) Analysis [Bolles, et al 87]. It is based on considering a dense sequence of
images as forming a solid block of data. Slices through this solid at appropriately cho-
sen angles intermix time and spatial data in such a way as to simplify the partitioning
problem. These slices have more explicit structure than the conventional images from
which they were obtained. In the referenced paper we demonstrated the feasibility
of this novel technique for building structured, three-dimensional descriptions of the
world.

In later work, instead of analyzing slices, we extended the above technique to
locate surfaces in the spatiotemporal solid of data, in order to maintain the spatial
continuity of edges from one slice to the next [Baker&Bolles88]. This surface-building
process is the three-dimensional analogue of two-dimensional contour analysis. We
have applied it to a wide range of data types and tasks, including medical images such
as computed axial tomography (CAT) and magnetic reasonance imaging (MRI) data,
visualization of higher dimensional (i.e., greater than three-dimensional) functions,
modeling of objects over scale, and assessment in fracture mechanics.

We have also implemented a version of EPI analysis that works incrementaily,
applying a Kalman filter to update the three-dimensional description of the world
each time a new image is received [Baker&Bolles88]. As a resnlt of these changes
the program produces extended three-dimensional contours instead of sets of isolated
points. These contours evolve over time. When a contour is initially detected. its
location is only coarsely estimated. However, as it is tracked through several images,
its shape typically changes into a smooth three-dimensional curve that accurately
describes the corresponding feature in the world.

Recently we have further extended of the EPI analysis technique in two directions.
The first is the modeling of biological structures from tomographic data [Baker90].
The descriptive formalism we are developing models tissue as two-dimensional man-
ifolds in three-dimensional space. We have used this type of model to demonstrate
simple versions of surgical simulation, kinematic modeling, and kinematic analysis. In
the second extension we are using the temporal tracking mechanism in EP] analysis
to detect and track moving objects from moving sensors. We have added evaluation
routines that select key features to be tracked on the moving objects.
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3.2 Detecting Moving Objects from Moving Sensors

Building upon our work in motion vision and terrain modeling, we have developed
techniques for detecting and tracking moving objects from a moving platform.

Motion in a sequence of images provides one of the strongest cues available about
the presence of a possible target in a scene. However, when a sensor is moving, ev-
erything in the image is moving. Therefore, detection of possible targets requires
separating the motion created by the movement of the sensor from the motion caused
by the movement of the target. One approach to this problem is to model the “back-
ground” image flow as a simple parametric flow field, then use this model to eliminate
image motion consistent with that flow. Any motion not consistent with the back-
ground movement is labelled as a possible moving object. Of course, such an approach
fails dramatically when the simple background assumption is violated, e.g., when the
terrain contains many ridges and valleys, which generate a wide variety of background
image motion.

The approach we have taken to handle these complex backgrounds is to integrate
a full three-dimensional terrain map into the target detection system. The basic idea
is to (1) use the model of the terrain and the known motion of the sensor to predict
the motion observed by the sensor, (ii) compute the actual motion present in the
imagery, and (iii) use the differences to robustly detect and track moving targets. The
addition of a terrain model yields a significantly more robust and sensitive detection
and tracking system than those relying on simpler background assumptions.

Note, however, that inaccuracies in the terrain model could produce differences
between the predicted and computed image motion that, over a small number of im-
ages, look similar to moving objects. Therefore, integral to this approach is the ability
to correct an a priori model of the environment as new data are acquired. In future
work, we plan to draw upon current techniques for recovering structure from motion
to dynamically update our models. By continually improving the underlying model,
the motion detection procedure will be able to distinguish short-term deviations from
moving objects.

As part of our research strategy we tested our algorithms on both simulated and
real data, using the Cartographic Modeling Environment {Hanson&Quams88} to pro-
vide extensive simulation data. The advantage of simulated data is that we know
“ground truth” and therefore are in a better position to judge the competence of
the algorithms along some key dimensions than when we analyze real data. This
strategy paid off. Our initial experimentation with simulated data pointed out a
serious weakness in displaying warped images to demonstrate the results of optic
flow computations. At occlusion boundaries, where flow vectors are undefined, optic
flow techniques locate matches and compute flow vectors for points that have similar
greyscale values. This procedure leads to stabilized intensity images, but completely
bogus flow vectors. Thus, the results look better than they really are in these areas.
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Given a terrain model, we are now able to predict occlusion boundaries and avoid
these erroneous results.

4 SCENE MODELING FROM PASSIVE DATA

In previous contracts, our stereo research has concentrated on cartographic appli-
cations where the emphasis was on precision instead of speed and where the variation
in sensor-to-world distances was relatively small. The goal of the stereo-evaluation
task, which was added to this contract, was to evaluate approaches to fast, pas-
sive ranging techniques for high-oblique, ground-level operation. Our strategy was
to characterize the strengths and weaknesses of current techniques, then investigate
novel sensor configurations and processing techniques for achieving the goals of the
passive ranging system.

To evaluate current and future stereo techniques we adopted an iterative strategy
that contains four steps. The first step is to analyze the relationship between the
geometric parameters of a stereo sensing system and the expected accuracy of the
computed depth measurements. The basic relationships are well known, but they
provide an initial set of constraints for designing a stereo system. The second step is
to gather several different tvpes of stereo data from a calibrated site. The third step
1s to generate some synthetic stereo sequences. The advantage of synthetic sequences
is that they provide complete knowledge of the scene, including camera locations and
the range to every point in the scene. The disadvantage is that it is not possible to
generate completely realistic images. The fourth step is to apply the techniques to
the data and evaluate their performance.

We selected a portion of the Stanford campus as the primary site for our data
acquisition. It is a relatively flat area containing several well-spaced oak trees and a
few eucalyptus trees. Since it does not include many small obstacles, we added a set
of rocks and stumps of known dimensions. To gather real-time stereo sequences we
mounted a pair of cameras on a truck, genlocked them to take their images simulta-
neously, and used a pair of videotape recorders to record the data. We used several
sensor configurations, changing such parameters as the camera baseline, vergence
angle, focal length, and aperture setting.

We concentrated our evalution on two stereo techniques developed here at SRI
International. The first, called CYCLOPS, uses a global optimization technique
(simulated annealing) to compute a range value for every point in an image. The
second, called StereoSys, uses correlation patches to compute ranges at information-
rich points in an image.

We began our evaluation by applying the techniques to an initial set of ground-
level data. As expected, the techniques had trouble with such things as the large




range of disparities on the ground. To handle these large ranges, we modified our
techniques so that they started their hierarchical matchers at a coarser level than for
cartographic imagery. In addition, we implemented a technique for using the results
from the analysis of one image pair in the sequence to initialize the analysis of the
next pair. Both approaches were effective. However, more research is required to
select the most effective control strategy for a particular Unmanned Ground Vehicle

(UGV) task.

Since stereo analysis will be computation bound for the next few years, we began
the exploration of focus-of-attention techniques to concentrate our analysis on the
most important scene features. We implemented a “foveal” version of the CYCLOPS
algorithm and started to explore control mechanisms for applying it. The idea was to
use a terrain model to project the planned path of the vehicle into the imagery and
then concentrate our analysis on that portion of the data.

In summary, the stereo techniques developed at SRI and at other research or-
ganizations around the world are mature enough to form the basis for an effective
passive ranging system. In addition, hardware support for such techniques has pro-
gressed sufficiently to make them fast enough for specific applications. On the other
hand, there are two key areas for future work. The first is in the characterization
of the strengths and weaknesses of current techniques. This is required so that we
know when to apply them to a task. The second area is the development of control
strategies for applying these techniques to such demanding tasks as UGV perception.

5 CONCLUSIONS

We see the work described in this report as an important step in building a new
generation of generic vision systems that are knowledge-base-driven, rather than task
specific and designed around techniques in which domain knowledge is compiled into
the algorithms. This new approach poses significant scientific problems that cannot
be completely solved over a few years. However, we have made significant progress
in four areas. First, we have developed a core knowledge system for integrating scene
models from multiple sources, including both maps and sensory processing. Second,
we have developed representation schemes for natural objects that support incremen-
tal modeling and recognition tasks. Third, we have developed a technique, called
Epipolar-Plane Image Analysis, which builds structured three-dimensional models
of a scene from image sequences. And fourth, we have developed a new technique
that uses stored models and contextual information to recognize natural objects and
man-made structures.

Our longer-range plans, which extend beyond the scope of this contract. are to
increase the competence of the system so as to meet or exceed the terrain modeling
and obstacle detection requirements for ground-level robotic devices, and to extend
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the generality of the system so that it can be successfully applied to a wide range of
vision problems.
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Abstract

Most work in visual recognition by computer
has focused on recognizing objects by their ge-
ometric shape, or by the presence or absence of
some prespecified collection of locally measur-
able attributes (e.g., spectral reflectance, tex-
ture, or distinguished markings). On the other
hand, most entities in the natural world defy
compact description of their shapes, and have
no characteristic features with discriminatory
power. As a result, image-understanding re-
search has achieved little success toward recog-
nition in natural scenes. We offer a funda-
mentally new approach to visual recognition
that avoids these limitations and has been used
to recognize trees, bushes, grass, and trails in
ground-level scenes of a natural environment.

1 Introduction

The key scientific question addressed by our re=search
has been the design of a computer vision system that
can approach human-level performance in the interpre-
tation of natural scenes such as that shown in Fig-
ure 1. We offer a new paradigm for the design of
computer vision systems that holds promise for achiev-
ing near-human competence, and report the experimen-
tal results of a system implementing that theory which
demonstrates its recognition abilities in a natural do-
main of limited geographic extent. The purpoee of this
paper is to review the key ideas underlying our ap-
proach (discussed in detail in previous publications [12,
13]) and to focus on the resuits of an ongoing experi-
mental evaluation of these ideas as embodied in an im-
plemented system called Condor.

When examining the reasons why the traditional ap-
proaches to computer vision fail in the interpretation of
ground-level scenes of the natural worid, four fundamen-
tal problems become apparent:

Universal partitioning — Most scene-understanding
systems begin with the segmentation of an image

‘Supported by the Defense Advanced Research Projects
Agency under Contracts DACA76-85-C-0004, DACAT76-90-
C-0021, and 89F737300.
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Figure 1: A natural outdoor scene of the experimenta-
tion site.

into homogeneous regions using a single partition-
ing algorithm applied to the entire image. If that
partitioning is wrong, then the interpretation must
also be wrong, no matter how a systemn assigns se-
mantic labels to those regions. Unfortunately, uni-
versal partitioning algorithms are notoriously poor
delineators of natural objects in ground-level scenes.

Shape — Many man-made artifacts can be recognized
by matching & 3D geometric model with features
extracted from an image [1, 2, 4, 6, 7. 9, 15], but
most natural objects cannot be so recognized. Nat-
ural objects are assigned names on the basis of their
setting, appearance, and context, rather than their
possession of any particular shape.

Computational complexity — The object recogni-
tion problem is NP-hard r16] As a result, computa-

tion time must increase exponentially as additional
classes are added to the recognition vocabulary, un-
less a strategy to avoid the combinatoric behavior is
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Figure 2: Conceptual architecture of Condor.

incorporated. Such provisions are a necessary com-
ponent of any recognition system that can be scaled
to embrace a real domain.

Contextual knowledge — Despite general
agreement that recognition is an intelligent process
requiring the application of stored knowledge (3, 5,
l:?. computer vision researchers typically use artifi-
cial intelligence techniques only at the highest levels
of reasoning. The design of an approach that allows
stored knowledge to control the lower levels of image
processing has proved elusive.

Except for the continuing work at the University of
Massachusetts [3], the understanding of natural scenes
has received surprisingly little attention in the last
decade.

2 Approach

A new paradigm for computer vision systems has been
developed, which addresses all four of the problems de-
scribed above. The key provision of this novel approach
is a mechanism for the application of stored knowledge
at all levels of visual processing. A contezt set, which
explicitly specifies the conditions and assumptions nec-
essary for successful invocation, is associated with every
procedure employed by the recognition system.

The architecture is organized into three modules as de-
picted in Figure 2 and described below (a more complete
description is also available [13)):

Candidate Generation —
Hypotheses concerning the presence in a scene of
specific categories of objects are generated by de-
lineating regions in an image using special-purpose
operators whose invocation is controlled by context
sets, thereby avoiding the need for universal parti-
tioning algorithms. The empioyment of large num-
bers of operators ensures that quality hypotheses
can be generated in nearly every context and pro-
vides redundancy that decreases the reliance on the
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success of any individual operator.

Candidate Comparison — Hypotheses are accepted
only if they are consistent with all other members of
a cligue (consistent subset). Candidate hypotheses
for each label are ranked so that the best candidates
for each label can be considered hefore the oth-
ers. Ranking the candidates ensures that the largest
cliques can be found early in the search, thereby
limiting the computational complexity of the entire
paradigm to a linear growth as the recognition vo-
cabulary is expanded. By constructing only a small
number of cliques for each image, the approach loses
any guarantee of finding the largest clique, but as-
sures the availability of a credible answer compatible
with the computational resources of the system.

Clique Formation — Consistency is enforced by pro-
cedures (controlled by context sets) that detect
and reject physically impossible combinations of hy-
potheses. The clique that most completely explains
the available data is offered as the interpretation of
an image. Thus, individual objects are labeled on
the basis of their role in the context of the complete
clique, rather than solely on the basis of individual
merit.

The invocation of all processing elements throughout
the system is governed by context. All processing ac-
tions are controlled by - :xt sets, and are invoked
only when their context sccs are satisfied. Thus, the
actual sequence of computations (and the labeling deci-
sions that are made) are influenced by contextual infor-
mation, which is represented by prior knowledge about
the environment and by the computational state of the
system.

Definition: A contezt set, CS;, is a collection of con-
text elements that are sufficient for inferring some
reiation or carrying out some operation on an image.

Syntactically, a context set is embedded in a contezt rule
denoted by

L . {CvaZ|"'|C'I} = A

where L is the name of the class associated with the
context set, A is an action to be performed, and the C;
comprise a set of conditions that define a context.

Example: The context rule

SKY : {SKY-IS-CLEAR, CAMERA-IS-HORIZONTAL
RGB-IS-AVAILABLE } = BLUE-REGIONS

defines a set of conditions under which it is appropri-
ate to use the operator BLUE-REGIONS to delineate
candidate sky hypotheses.

There is a collection of context rules for every class
in the recognition vocabulary, and each collection con-
tains rules of three types: candidate generation, candi-
date comparison, and consistency determination. In the-
ory, Condor performs the actions A that are associated
with every satisfied context set.




Figure 3: Result of analyzing Figure 1.

3 The recognition process

For each label in the active recognition vocabulary, all
candidate-generation context sets are evaluated. The
operators associated with those that are satisfied are
executed, producing candidates for each class. The
candidate-comparison context sets that are satisfied are
then used to evaluate each candidate for a class, and if
all such evaluators prefer one candidate over another, a
preference ordering is established between them. These
preference relations are assembled to form partial or-
ders over the candidates, one partial order for each class.
Next, a search for mutually coherent sets of candidates is
conducted by incrementally building cliques of consistent
candidates, beginning with empty cliques. A candidate
is nominated for inclusion into a clique by choosing one
of the candidates at the top of one of the partial orders.
Consistency-determination context sets that are satisfied
are used to test the consistency of a nominee with can-
didates already in the clique. A consistent nominee is
added to the clique; an inconsistent one is removed from
further consideration with that clique. Further candi-
dates are added to the clique until none remain. Addi-
tional cliques are generated in a similar fashion as com-
putational resources permit. Ultimately, one clique is
selected as the best semantic labeling of the image on
the basis of the portion of the image that is explained
and the reliability of the operators that contributed to
the clique.

The interaction among context sets is significant. The
addition of a candidate to a clique may provide context
that could trigger a previously unsatisfied context set
to generate new candidates or establish new preference
orderings. For example, once one bush has been recog-
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Figure 4: A perspective view of the 3D model produced
from the analysis of the image shown in Figure 1.

nized, it is a good idea to look specifically for similar
bushes in the image. This tactic is implemented by a
candidate-generation context set that includes a context
element that is satisfied only when a bush is in a clique.

4 Evaluation scenario

The approach has been implemented in the form of a
complete end-to-end vision system, known as Condor.
Images that are monochromatic or color, monocular or
stereo, provide the input to the system, along with a
terrain database containing prior knowledge about the
environment. Condor produces a 3D model of the envi-
ronment labeled with terms from its recognition vocab-
ulary which is stored in the Core Knowledge Structure
(CKS) (10, 11] and can be superimposed on the input im-
age (Figure 3) or viewed from another perspective (Fig-
ure 4}. The model is used to update the terrain database
for use by Condor during the analysis of subsequent im-
agery.

To evaluate the Condor approach, we selected a two-
square-mile region of foothills immediately south of the
Stanford University campus as our site for experimen-
tation. This area contains a mixture of oak forest and
widely scattered oak trees distributed across an expanse
of gently rolling, grass-covered hills and is criss-crossed
by a network of trails.

We chose 14 classes for the recognition vocabulary on
the basis of their prevalence in the experimentation site
and their importance for navigation. These terms are:

{sky. ground, geometric-horizon, foliage. bush,
tree-trunk, tree-crown, trail, skyline, raised-object,
complete-sky, complete-ground, grass, tree}

Procedures have been devised to extract, evaluate, and
check the consistency of candidates for each of these
classes. Context sets have been constructed to control
the invocation of each of those procedures. Currently
the knowledge base contains 88 procedures whose invo-
cation is governed by 156 context sets. All the results
described in this paper have been generated using this
knowledge base.




Initial contextual information was extracted from a
USGS map and an aerial photograph; this includes a
30-meter-grid digital elevation model (DEM), the road
network, and the location of forested regions as shown
on the map. The aerial photo, being more recent, was
used to update the map information. These data were
extracted by hand and stored in the Core Knowledge
Structure.

5 Experimentation

The research results presented here are indicative of the
performance of Condor when analyzing scenes from the
Stanford experimentation site. By themselves, these re-
sults do little to endorse the Condor approach, but to-
gether with similar results that have been obtained with

several dozens of other images, they attest to the validity

of the ideas contained therein.

5.1 Experiment 1

One shortcoming of many machine vision systems is their
brittleness when analyzing scenes that exhibit significant
variance in the setting or appearance of their compo-
nents. Qur design has focused on this problem because
natural scenes possess great variability in their appear-
ance. How well we have achieved this goal can be par-
tially assessed by testing the following claim:

Assertion 1 The Condor architecture s sustable for
recognizing natural objects in many contezrts.

In this experiment, Condor analyzed images taken un-
der a variety of conditions at the Stanford experimenta-
tion site. These images were selected to study how Con-
dor deals with changes in scale, view angle, time of day,
season, cloud cover, and other ordinary changes that oc-
cur over the course of several years. Here we present a
sample of those images that illustrates the breadth of
competence exhibited by Condor.

Figure 5 shows four images of the same tree obtained
with the specified image acquisition parameters. In all
four of these images, Condor successfully identified the
tree without the benefit of any prior information. In
three of the images, the trunk was identified by a spe-
cialized operator designed to detect thin, dark, vertical
lines. In the fourth image, one of Condor’s wide-trunk
detection algorithms (a variant of a correlation-based
road-tracking algorithm) was responsible for generating
the correct trunk. Given that context, Condor used sev-
eral of its texture measures to help identify the foliage
and assembled the results into 3D models to confirm the
existence of the tree. These results are indicative of Con-
dor’s abilities to recognize a tree from any view angle, to
accommodate a 7:1 range in scale, to be immune from
changes that occurred over a period of 21 months, and
to deal with seasonal variation. When Condor has prior
knowledge of the existence of this tree, it can be rec-
ognized from a distance of at least 590 feet (as demon-
strated in Experiment 3), thereby extending its abilities
to a 20:1 range in scale.

Experiments applying Condor to other images (not re-
produced here) confirm the viability of the approach for
recognizing natural objects in a wide variety of settings
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range: 194 feet 28 feet
view angle: 160° 124°
date: | 12 April 1990 28 July 1988
range: 56 feet 87 feet
view angle: 208° 258°
date: | 12 April 1990 12 April 1990

Figure 5: The models of the trees as they were recognized
by Condor.

that occur at the experimentation site. The modular-
ity of the context sets makes it possible to expand the
breadth of competence still further without degrading
previously demonstrated capabilities.

5.2 Experiment 2

To support autonomy in an intelligent, ground-based ve-
hicle, it is necessary to synthesize a reasonably complete
description of the entire surroundings, and not just rec-
ognize a few isolated objects. This description can be
built incrementally because the world does not change
very rapidly considering the spatial and temporal scales
at which an autonomous ground vehicle would operate.
The following assertion summarizes this notion:

Assertion 2 A geographic database of an extended re-
gion can be constructed by combining the recognition re-
sults from multiple images, taken over an extended period
of time and under multsple viewing condstions.

To validate this assertion, a sequence of imagery was
collected which simulates the movement of a vehicle
through a portion of the Stanford experimentation site.
The vision system is to construct a labeled, 3D map of
the primary features in the vicinity of the simulated ve-
hicle by analyzing each image in turn.

Figure 6 shows the location of the vehicle when each
image in the sequence was acquired. Condor was tasked
to locate the trees, bushes, trails, and grass in each of
these images, beginning with only the information ex-
tracted from the USGS map. The results of Condor’s




Figure 6: The location and orientation of the camera
when each image in Figure 7 was acquired.

analysis are portrayed in Figure 7. Here we highlight
a few of the more interesting chains of reasoning and
explain the misidentifications that were made:

Image 1 — Condor has correctly labeled the sky, the
ground, the trail, and part of the grass, although
the trees on the horizon were too indistinct to be
reliably identified. These results are transformed
into three-dimensional models and positioned in 3-
space using depth data acquired from binocular
stereo.! The resulting models were added to the
CKS database to be used as context for the analysis
of subsequent images.

Image 2 — The model of the trail from the first im-
age was projected into the second image and used
to help identify a portion of the trail. This is ac-
complished by an operator that superimposes a pair
of parallel 3D curves and deforms them to find the
model with maximum edge strength while minimiz-
ing its curvature (as in [8]). Statistics from the in-
tensity and texture of the grass in the first image
were used to help identify the grass in this second
image. In this case, the trail-finding operators failed
to find the upper half of the trail; as a result, the
grass hypotheses in that area were not contradicted.

Image 3 — The tree is finally close enough to allow re-
liable recognition and a 3D model for it is computed
by extracting the envelope of its foliage. The entire
visible portion of the trail was correctly identified.

Image 4 — Two additional trees are recognized and
stored.

Image 5 — The same trees are recognized by predict-
ing their location and verifying their existence — a
much more reliable process than initially extracting

!When range data are not available, Condor estimates the
depths by projecting each region onto the DEM.
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Figure 7: Results of Condor’s analysis of the sequence
of eight images.




Figure &: The composite model resulting from the anal-
vsis of the image sequence in Figure 7.

them. No trunk was detectable in the foliage to the
left of the image. so Condor labeled 1t as bush

Image 6 — The texture in the lower corners of the
sixth 1mage was found to more closely resemble
foliage than grass. so these regions were erroneously
identified as bushes Beause they are very near the
camera, they occupy a significant part of the image,
but the 3D model created for them reveals that they
are less than 2 feet tall

Image 7 — Several more trees. grass areas. and part
of the trail are recognized 1n the seventh image

Image 8 — The primary tree is recognized despite the
strong shadows. but the lower portion of the trunk
was missed by all the trunk operators Most of the
tree crown operators were unable to provide a de-
cent candidate because of the overhanging branches
in the upper-right corner — the only operator that
succeeded was the one that predicts the crown based
on the size and location of the trunk. The combined
effects of the incomplete trunk. the nearness of the
tree. and the lack of range data account for poor
extraction of the tree crown.

This experiment illustrates how Condor 1s able to use
the results of analyzing one image to assist the analy-
sis of other images. Although some trees and parts of
the trail were missed in several images, the 3D model
that results is nearly complete. Figure 8 shows an aerial
view of the composite mode! contained in the CKS after
processing all eight images. For comparison. Figure 9
portrays a model of the objects actually present on the
ground. which was constructed by physically measuring
the locations and sizes of the individual objects Note
that all of the trees that were visible in at least one image
have been correctly labeled. although some of them were
misplaced Most of the trail has been detected. enough
to allow a spatial reasoning process to hink the portions

oh]

Figure 9 The ground-truth database

into a single continuous trail. Furthermore, everything
that was labeled tree actually is a tree

5.3 Experiment 3

Regardless of the architecture. knowledge-based vision
svstems are difficult to build. If the programmer needed
to specify in advance all the information necessary
for successful recognition. his task would be hopeless
Therefore. 1t 1s essential that a vision system have the
ability to improve its competence autonomously. thereby
learning through experience how to recognize the objects
In its environment

Assertion 3 ['sing contert allouws Condor to learn hou
to recognize natural objects

To test the validity of this assertion. we return to the
first image of the sequence used in Experiment 2 (Fig-
ure 7). When originally analyzed. Condor recognized the
trail and part of the grass. but not the trees.

Condor was tasked to reanalyze the first image. this
time making use of the contents of the entire database
constructed during the analysis of the sequence of eight
images. The resulting interpretation is depicted in Fig-
ure 10

Two trees that could not be extracted on the first pass
are now identified. Condor employed a tree-trunk opera-
tor whose context set requires knowledge of the approxi-
mate location of a tree in the field of view The operator
projects a deformable 3D model of the trunk onto the
image. and optimizes its fit to extract the trunk This
operator successfully 1dentified two of the trees without
contradicting any of the original recognition results

This experiment (along with others not described
here) 1llustrates that the ability to use prior recognition
results as context while interpreting subsequent 1mages
enables Condor to improve 1ts performance as Its expo-
sure LO 1S envIronment Increases




Figure 10: The results of analyzing the first image from
Figure 7 with and without the information extracted
from subsequent images.

6 Conclusion

In its present embodiment, Condor is still a demonstra-
tion system that should be evaluated primarily in terms
of its architectural design and innovative mechanisms.
rather than its absolute performance. While Condor has
demonstrated a recognition ability approaching human-
level performance on some natural scenes, it is still per-
forming at a level considerably short of its ultimate po-
tential (even for the Stanford experimentation site). The
knowledge acquisition mechanisms, which are a key as-
pect of the architecture, should allow continued improve-
ment in performance with exposure to additional site
imagery.

A new paradigm for image understanding has been
proposed, and used to recognize natural features in
ground-level scenes of a geographically limited environ-
ment. This context-based approach is exciting because
it deemphasizes the role of image partitioning and em-
phasizes the recognition context in a way that has not
been attempted before. This new focus could lead to
the construction of vision systems that are significanily
more capable than those available today.
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Abstract: A representation paradigm for instantiating and refining multiple, concur-
rent descriptions of an object from a sequence of imagery is presented. This paradigm is
designed to be used by the perception system of an autonomous robot that (1) needs to
adequately describe many types of objects, (2) initially detects objects at a distance and
gradually acquires higher-resolution data, and (3) is continuously collecting sensory input.
We argue that multiple, concurrent descriptions of an object are necessary because different
perceptual tasks are best performed using different representations and because different
levels of description require different quality of data to support their computation. Since
the data changes significantly over time, the paradigm supports the evolution of descrip-
tions, progressing from crude two-dimensional “blob™ descriptions to complete semantic
models, such as bush, rock, and tree. To control this accumulation of new descriptions, we
introduce the idea of a representation space. The representation space is a lattice of repre-
sentations that specifies the order in which they should be considered for an object. One
of the representations in the lattice is associated with an object only after the object has
been described multiple times in the representation and the parameters of the representa-
tion have been judged to be “stable.” We define stability in a statistical sense enhanced by
a set of explanations describing valid reasons for deviations from expected measurements.
These explanations may draw upon many types of knowledge, including the physics of the
sensor, the performance of the segmentation procedure, and the reliability of the matching
technique. To illustrate the power of these ideas we have implemented a system, which we
call TraX, that constructs and refines models of outdoor objects detected in sequences of
range data.
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Bobick and Bolles 2

1 Introduction

Much of computer vision research is directed at the problem of constructing computational
descriptions of the world. To that end, many representations — description languages —
have been devised to describe different types of objects and support different types of tasks
(e.g., see Agin & Binford, 1973; Marr & Nishihara, 1978; and Oshima & Shirai, 1978). In
addition, there is an extensive body of research on filtering techniques for incrementally
refining object description parameters as new sensory data are acquired. However, little
research has been devoted to the coordination of multiple, concurrent descriptions of objects,
particularly when the descriptions are to be refined over time. In this paper we present a
representation paradigm that supports the instantiation, accumulation, and refinement of
significantly different descriptions of an object.

The goal of constructing a multiplicity of descriptions of an object is motivated by
the following two observations: First, different objects and different tasks require different
representations. A description language well suited for describing the shape of vegetation
may be poorly suited to describing the shape of a hippopotamus. Second, as the quality
of sensory data changes, the types of representations that can be supported change. The
initial description of a distant object may be as simple as a bounding sphere, while a fully
developed model, built from high resolution data, may be a complex structure of parts. It
is premature to try to compute a multi-part description of an object that spans only a few
pixels in an image.

The motivation for our research is the development of a perception system for an au-
tonomous robot. One of our primary goals for such a system is for it to construct a reliable
mode! of the environment that is complete enough to support such tasks as route planning,
obstacle detection, and landmark recognition. This need to support a wide range of tasks
requires the perception system to compute a rich set of descriptions. Also, within the do-
main of autonomous navigation the availability of new and improved data arises naturally:
approaching an object yields better resolution and repeated observations from different di-
rections provides increasing shape information. To provide an intuition as to the desired
performance of such a perception system, and to motivate the use of multiple, concurrent
descriptions, consider the following example of an autonomous system constructing a map
of its environment as it moves along:

Assume that a robot vehicle using range imagery initially detects a small object at
a distance of 20 meters (the obstacle is actually a thin thistle bush). At that range, the
system cannot be certain whether the object is a real obstacle or an artifact of the detection
process; confirmation from the analysis of subsequent images is required. By analyzing 3 or
4 new images of the scene, the program determines that the object is real, and then formally
enters the object into the robot’s model of the environment. Poor sensor resolution, however,
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permits only a crude estimate of the object’s size and position. As the vehicle continues
to approach the object, the increased resolution allows the robot to specify the size and
position more precisely; again, agreement between estimates from one image to the next
provides a high degree of confidence in these estimates. As the vehicle gets closer yet, the
program detects and builds descriptions of individual parts of the object. It detects and
describes four stick-like parts that correspond to the stem and branches of the thistle. When
these parts have been confirmed over several images, they are added to the object’s model
and refinement procedures are instantiated to update their shape and location estimates
over time. And finally, since the descriptions of the object’s parts match those of thistle
bushes, which are expected in the area, the robot classifies the object as a thistle bush, and
adds this semantic description to the object’s model. This cumulative description process
is shown in Figure 1.

If during the analysis that produces these descriptions, the bush is not detected in an
image, the program tries to explain why the bush was not detected instead of assuming that
it disappeared. Perhaps the bush is out of the sensor’s field of view, is occluded by another
object, or was missed by the low-level segmentation process. Incorporating such an expla-
nation subsystem into the description evaluation process extends our definition of temporal
stability to include such events and improves performance by successfully accounting for
rare, yet expected, situations. To identify the possible causes of loss of continuity, the expla-
nation subsystem invokes a wide variety of heuristics designed to match the characteristics
of particular sensory and processing stages.

As the perception system computes and validates more descriptions of the objects in a
scene, it is able to provide better responses to requests from other vehicle modules, such
as the route planner or the landmark recognizer. For example, if the perception module
has only computed and validated the crude 3D description of an object, its response to a
question about possible obstacles in front of the vehicle would only consist of a description
of the object’s approximate size and location. Not knowing the identity of the object, the
planner would have to select a route that avoids the object. If, on the other hand, the
perception module has identified the object as a thistle, the planner has more options,
including running over the object, if there is no convenient clear path around it.

In this representation paradigm, the system only compares two object descriptions in
the context of a specific task. The key question is “Which description is better for answering
the particular question?” not “Which description is intrinsicly better?” Thus, an occupancy
grid may be the best description for answering questions about the empty space around an
object; a viewer-centered description may be best for tracking an object from image to
image; a generalized-cylinder model may be the best for predicting the appearance of an
object from another point of view. The system employs several representations as equal
partners in its description of the object.
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Figure 1: The evolution of the description of an object. As more information beeomel available,
the parameters of previously instantiated descriptions are refined and, as more de_scn.phom can be
computed reliably, the model of the object is expanded to include these new descriptions.
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In the remainder of this paper we describe a representational framework for a vision
system that maintains multiple, concurrent descriptions of objects. The representations
used to form the descriptions are designed to model different types of objects, to support
different types of inferences, and to require different specificity and accuracy of data to
warrant their computation. We embed this framework within a system that incrementally
constructs object descriptions over time, such that the complete description of an object
evolves. We make use of temporal stability to assess the validity of computed descriptions.
In the final section of the paper, we discuss some the difficult questions that are raised by
employing such a representational scheme.

Throughout this paper, we illustrate our ideas with results from the TraX system, an
implemented system that constructs and refines models of outdoor objects, such as bushes,
trees, and rocks, detected in sequences of range data. With regards to the implementation
of TraX we make two observations: First, we do not mean to imply that the particular
set of representations presented is adequate to describe the entire outdoor world. In fact,
our research is designed to allow the seamless introduction of additional representations as
is necessary; additional representations are needed as new object types or new tasks are
considered. Second, the particular components we assemble for addressing the autonomous
navigation task are not of primary importance; they were constrained by the sensory data
available and the objects of interest. What we do hope to convey is the importance of
incorporating a detailed understanding of the sensors and the processing algorithms into
the multi-representational framework; this understanding is critical to successfully choosing
available representations and exploiting computed descriptions to perform necessary tasks.

2 A Space of Representations

In a multiple representation system, should all the representations be used to describe all
the known objects all of the time? We argue that the answer to this question is “no” for two
reasons: First, the resolution of the data may only support simple models. Not only would
computing a more complex structural description be a waste of computational resources, the
model produced would be erroneous, possibly leading to false conclusions on the part of the
perception system. Second, the diversity of objects in the world is such that some objects
are best described using one set of representations whereas others are best characterized by
another. It is unreasonable to expect a single representation to be appropriate for all objects
in the outdoor world; this is especially true for high-level representations such as generalized
cylinders [Agin and Binford, 1973}, superquadrics [Pentland and Bolles, 1988), or geometric
solids [Popplestone, etal. 1975; Oshima and Shirai, 1978]. In the domain of autonomous
navigation, a building might be well represented by geometric solids while more irregularly
shaped objects, such as trees and bushes, would require quite different representations.
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Figure 2: The representation space for the TraX system. The shaded nodes represent components
of the representation in use. A new node can be shaded only if one of its connecting nodes is shaded
and the stability conditions necessary for its acceptance have been met.

To capture the natural progression of representations supported by better data and to
cover the diversity of objects in the world, we have introduced a partially ordered set — a
lattice — of representations, which we call representation space. The importance of having
a lattice is that it focuses the perception system on the most appropriate representations for
an object, given both the resolution of the data and the inherent properties of the object.

Figure 2 shows the representation space used in the TraX system, which we implemented
to explore the issues associated with a multiple representation system. We consider represen-
tation space to be composed of fundamental representations and enhancements. Each funda-
mental representation reflects a qualitatively distinct representation, while an enhancement
corresponds to the addition of a few parameters to a fundamental representation.! In the
diagram each large node corresponds to a fundamental representation; each small node, to
an enhancement. As indicated, fundamental representations available in our TraX system
include 2-d blobs, 3-d blobs, superquadrics (SQ), sticks (a 3-d parts representation described
later), and several semantically based representations including bush and tree.

1We recognize that there is no formal distinction between levels and parameters. However, the intuition
that there are several qualitatively different representations, each of which can be eahanced by the addition
of a few parameters, is strong and we have found the distinction useful.
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Figure 3: Contrasting hierarchical representations (a) with representstion space (b). In repre-
sentation space, descriptions vary in the types of representations used; additional information not
only causes accuracy to improve but also allows an object description to contain different types of
information(@Reprinted from Marr and Nishihara, 1978.)

Representation space is similar to scale space [Witkin, 1983] in that the representation
of an object is not restricted to any one level of description; different levels of specificity are
possible. Unlike scale space, however, and unlike hierarchical representations [e.g., Marr and
Nishihara, 1978; Nishihara, 1981; Brooks, 1981} representation space is not homogeneous.
For example, Marr and Nishihara propose using generalized cylinders of many scales to
achieve a representation that spans data of different resolutions. Although the description
of an object improves as more detailed information is acquired, there is no change in the type
of inferences the representation can support. Only the size and number of primitives and
the corresponding level of accuracy improves. In representation space, however, a change
in representation often implies the ability to assert new properties about an object. These
two approaches are schematically contrasted in Figure 3.
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One of the implications of representation space is that as new data are processed, the
description of an object can be modified in one of three ways. First, the parameters of the
active components of the representation can be updated. We refer to this process as refine-
ment; refinement procedures use standard filtering techniques and are similar to algorithms
used by others to reduce parameter uncertainty. [Ayache and Faugeras, 1987; Matthies
and Kanade, 1987; Smith, Self, and Cheeseman, 1987; Crowley, 1989]. The second type
of change is the activation of a parameter or property attached to an active representa-
tion. For example, the active representation indicated in Figure 2 could be expanded by
activating the TEXTURE node under 3D-BLOB. This type of modification is referred to
as enhancement; the representation is enhanced by the addition of a new parameter. The
final type of update is augmentation; in Figure 2 this would correspond to activating either
the SQ (superquadric) or the STICK fundamental representation. The augmentation of a
representation for an object means that the object can be described in a completely new
vocabulary. As a collection, the methods of modifying the description of an object are
designed to combine well-known quantitative techniques for integrating information with a
more qualitative approach that permits the nature of a representation to change over time.

Arcs in the representation space diagram indicate ways that the description of an ob-
ject can be extended; that is, they provide the control structure for the accumulation of
descriptions. A new node in representation space can be become active, indicating that
the corresponding representation is active for a given object, only if one of its predecessor
nodes is active. By shading nodes in this diagram we indicate the active components for
a particular object. For example, in Figure 2 the large shaded node labeled 3D-BLOB
indicates that a reliable 3-dimensional blob description has been computed for the object.
The small shaded nodes labeled SIZE and POS reflect the fact that the size and position
of the blob are known.? Thus, for this particular object, the TEXTURE, SQ, and STICKS
nodes can be activated the next time data for this object is analyzed.

Note that the arcs in representation space do not imply computational dependency. For
example, the algorithms in the TraX system for computing a superquadric model of an
object are independent of those for computing a 3D-BLOB description. This differs from
typical level of abstraction hierarchies where each new descr.ption is computed from the
previous level representation; in a typical sequence, lines are computed from edges, planar
facets from lines, volumetric primitives from lines, etc. [Hanson and Riseman, 1987). Such
chaining of representations leads to the compounding of processing errors. In contrast,
the different levels of representation space can be used to check the validity of a computed
description. If the 3D-BLOB predicted by operations performed on the superquadric model

3For this discussion we are ignoring the issue of uncertainty in the estimate of 3 parameter. In actuality, once
the measurement of a parameter is determined to be relatively stable we use Kalman filtering techniques
to update the value of the parameter and maintain an explicit estimate of the uncertainty of the value.
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Figure 4: A conceptual graph demonstrating the utility of representation space. The abscissa
indicates increased sensory input. The ordinate indicates the “power” of the description of an object
as constructed by the system. The large steps indicate sugmentation, where a new fundamental
representation has been activated, and that new representation supports many new inferences about
the object. The small steps reflect enhancement, where new parameters have been added to a
current description. Finally, the increasing slope of the tops of the steps indicates refinement, the
improvement in the accuracy of the current representation.

is not similar to the blob computed directly from the data, then the system would have
evidence that at least one of its descriptions is not valid. While we have not yet explored
this issue in detail, we would hope to make use of the independence of representations to
increase the overall robustness of the system.

Also, it is important to realize that when a new representation is used to compute a
description for an object, the previous descriptions are not discarded. They are retained
because they may be the best representation to answer a task-related question, even if they
are at a reduced level of specificity or accuracy. Included in Section 3 are examples of
employing multiple levels of description for accomplishing different perceptual tasks.

To underscore the point that the construction of a description of an object is a cumulative
process, consider the conceptual graph in Figure 4. This graph is intended to reflect the
utility of representation space. The abscissa indicates the amount of processed sensory
input, which in the case of an autonomous robot is monotonically related to time. The
ordinate indicates the “power” of the description of an object as constructed by the system.
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As more data are processed, the description of an object becomes more precise and thus more
“powerful.” The large steps indicate augmentation, where a new level of representation has
been activated which supports many new inferences about the object. The small steps reflect
enhancement, where new parameters have been added to a current description. Finally,
the increasing slope of the tops of the steps indicates refinement, the improvement in the
accuracy of the current representation.

3 Stability and Validity

Representation space controls the order in which representations are explored for describing
a particular object. How does the system decide that a computed description is valid and,
therefore, should be added to the object’s model? In this context we use the term valid to
mean that the description correctly characterizes some aspect of the object, as opposed to
being a transient artifact of the processing. To address the question of validity we must
consider the causes of artifacts.

Artifacts can arise for several reasons. Computing a description of an object using an
inappropriate representation can easily lead to a model that does not reflect any intrinsic
property of the object; for example, a stick description of a boulder is mostly determined
by idiosyncracies of the stick fitting algorithm. Also, artifacts can arise because of rare, yet
expected, events that violate the assumptions embodied in the processing; for example, acci-
dental alignment can make two objects appear to be one larger object. Finally, artifacts can
occur because of unmodeled errors; for example, a segmentation algorithm can hallucinate
an object from an unlikely variation in the data. The ability to determine when a descrip-
tion is valid is important for any perception system; it is critical in a multi-representational
framework in which many descriptions are tried and only a few characterize an object well.

QOur current approach to assessing the validity of a computed description relies on an
analysis of temporal stability. We do this by tracking an object over time, computing a
new description of it in each image, and then analyzing the sequence of these independently
computed descriptions. If the descriptions are similar over a period of time, we compute a
composite description, validate it as a real entity, and add its description to the model of
the scene. For example, if a particular stick description is computed repeatedly for a part
of an object, we assume that the consistency across independently computed descriptions
is due to a real structural property of the part, and therefore the stick description of the
part is added to the model of the object.

Given this basic strategy, there are two key phrases that need to be functionally defined
in order to convert it into an algorithm: “similar descriptions™ and “over a period of time.”
To define these terms, we ideally would like to rely strictly on strong models of components
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of the perception system, such as the physics of the sensor, its noise characteristics, and
the characterizations of the image analysis techniques. However, in practice, these models
are pot adequate to completely predict the behavior of the system. As a result, we use
these explicit models when they are available and, when necessary, augment them with
statistical, empirically determined models. For example, we predict where we expect to see
a previously detected object and how large it will be from a combination of three strong
models: a model of the physics of the range sensor, a model of its scanning geometry, and
a model of the vehicle’s motion based on inertial navigation data or land navigation data.
However, to predict how frequently an object might be missed by our low-level segmentation
procedures, we built a simple statistical model by applying the procedures to hundreds of
images and accumulating failure statistics.

Deep and Shallow Models and Ezplanations

Jain and Binford [1991] use the term “shallow” to refer to statistically derived models;
we will thus use the term “deep” to refer to models derived from known physical systems.
These deep models, such as the model of the range sensor’s scanning technique, can support
quite precise predictions and can be embedded in algorithms that cover a wide range of tasks.
For example, we use the scanning model of the sensor in conjunction with high-frequency
inertial navigation data (i.e., a set of measurements for each image scan line) to compensate
for the bouncing of the vehicle during the four tenths of a second required to gather a range
image using the Environmental Research Institute of Michigan range sensor. This process
not only corrects for bouncing, but also corrects for the relativistic effect that causes vertical
telephone poles to bend in the imagery because the vehicle is significantly closer to the pole
when it measures the bottom of the pole than when it measures the top. Deep models
are robust in the sense that they always contribute an accurate characterization of the
processing system.

Shallow models, however, such as our simple statistical model of the failure frequency
of our segmentation procedures, are always suspect. A commonly cited reason for their
restricted utility is the difficulty of ensuring that the training set adequately covers the
range of expected scenes [Duda and Hart, 1973]. A more serious difficulty with shallow
models is that situations arise in which the application of those models is inappropriate.
As mentioned, we use the empirically determined probability of failure of a segmentation
algorithm to determine the number of times an object should be detected in a sequence
of imagery before being declared valid. With our current segmentation procedures this
threshold is set at three. However, there are many reasons other than the failure of the
segmentation procedure for an object to be undetected in a given image, and, furthermore,
these situations are predictable from additional system component models. Thus, for robust
performance, the use of shallow models must be tempered by ezplanations, here defined to
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be understood situations that cause shallow models to be inappropriate. For example, the
decision about whether an object has left the field of view is based on the model of the
sensor’s scanning technique and the vehicle’s location estimates; this is an example of an
explanation based upon a deep model. On the other hand, one of the common mistakes
of our system occurs in our column-oriented analysis of the raw range image. For that
problem, we only have an ad hoc description of the pathology of an error, in this case a
columnar plume suddenly appears in the shape of the object. If some object is not matched
in a new image, and an apparently new object has appeared with a large columnar piece,
the system explains the situation as being a possible error in processing.

The idea of a possible error introduces our last point about employing shallow models:
decisions based upon shallow models are always suspect and should be confirmed by further
data. As such, it often becomes necessary for the system to maintain multiple, competing
hypotheses about the state of an object. Continuing the example of the last paragraph,
the system does not absolutely conclude that the newly shaped object is indeed a halluci-
nation caused by a processing error. Rather, a wait-and-see attitude is adopted, and both
possibilities are maintained; the processing of subsequent images resolves the ambiguity.

3.1 Stability in blob detection

The first representation used to describe an object is 2D-BLOB. In the TraX system, the
2D-BLOB description of an object consists of the range pixels corresponding to the object,
as viewed in the most recently processed image. This representation is important not only
because it is the first instantiation of a model for an object and therefore endows existence
to some object, but also because the actual pixels viewed in one image are best description
for matching that object in the next image of a sequence. The question of whether a 2D-
BLOB description is valid is really a question of whether the segmentation process correctly
detected a real obstacle, or it mistakenly isolated some pixels that are part of the ground.
Robustly detecting obstacles and tracking these objects from image to image are critical in
a system that integrates information over time to construct reliable models.

The segmentation procedure in the TraX system consists of classifying each pixel in each
range image as ground or obstacle. This classification is made by applying a multi-step
procedure that first identifies regions in the image that are well fitted by planes. We next
determine the consistency of these planes with an a priori digital terrain map (DTM)), using
orientation as the principal factor. The consistent planes are then extended to completely
cover the gaps between them, essentially forming a new, local DTM. Any range pixels
that are more than a certain distance above or below this new DTM are then marked as
obstacles. Because the ground clearance of the Martin Marietta Autonomous Land Vehicle
is about six inches, we use that value as a threshold. Notice that because we make use of
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the temporal stability of the detected obstacles to validate the segmentation, we can set
the threshold according to the specifications of the task, instead of concentrating on the
expected single image false alarm rate.

As mentioned earlier, we use a shallow model of obstacle detection to determine the
best control strategy for assessing validity. Empirically we have determined that if an
object detected in three consecutive images, then there is a very high probability that it is a
real object. In addition, once an object has been validated, it is unlikely to be missed twice
consecutively. We implement this simple control strategy using a quasi finite-state machine
(QFSM). We use the term “quasi” because as an object moves through these states the
history of its traversal is recorded and can sometimes affect operations that occur outside
the FSM control structure.?

Figure 5 shows a simplified portion of the QFSM used for the analysis and tracking of
two dimensional blobs. Notice that there are several ways to enter the Initially-Detected
state, including being detected in the first image of the sequence, coring out from behind
another object, and splitting off a previously detected object. The importance of making
these paths explicit is that we can later use this information to help explain unexpected
phenomena and to affect decisions made outside the control structure of this QFSM, such
as deciding how to combine the models of two objects later decided to be only one object.

Once an object is Initially-Detected we try to match that object in subsequent images.
As an object is successfully matched it moves into the Stable state; at this point the object
is considered to be “real” and attempts to extend the description are begun. If, however,
after initial detection the object is no longer matched, the object quickly moves to the
Artifact state indicating that the detected obstacle is an artifact of some processing step
and should be discarded.

Notice, that at each state there is 2 missed-but-can-explain transition. This type of
arc represents a situation where the object is not successfully located in an image in which it
is expected, but there is an extern»! explanation as to why not. Increasing the competence
of the system requires recognizing these situations and incorporating explanations of them
into the evaluation process. We currently have implemented the analysis required to support
the following explanations:

o The object is no longer in the field of view of the sensor.
¢ The object is occluded by another known object.

e The object is a small, short blob far away so it can be easily missed.

3We could implement the contro} structure using a true FSM by simply increasing the number of states. We
choose not to do so because we would end up with many states that were qualitatively similar, obscuring
the general structure.
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Figure 5: Part of the finite-state machine for determining stability of 2D-BLOBS.
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Segrent 457137
Figure 6: Tracking detected obstacles from image to image.

o The object merged with another object to form a larger object.

o The object is unmatched because an error in the ambiguity interval assignment greatly
changed the apparent characteristics of the object. (Ambiguity interval assignment
is a preprocessing step necessary for determining the true range from a phase shift
range image.)

Figure 6 is a sequence of segmentation images produced by the single-image analysis. Ob-
ject 1 (the short object on the right) is detected in all 4 images. Initially, this object is not
matched in the fourth image because the object’s shape has changed dramatically. However,
the change is mostly characterized by the addition of a column of pixels in the last image. In
the TraX system, a column scanning algorithm is used to disambiguate the phase-encoded
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raw range signals; we refer to this processing as ambiguity interval assignment. Therefore,
a column shaped change in the appearance of an object is symptomatic of a particular
mistake, namely an ambiguity interval assignment error. Thus, in this example, the pro-
gram concludes that an ambiguity error has possibly occurred. The TraX system retains
information about this error as indicated by the following portion of program output:

Startiag view 157 ...
(ORJECT-TRACKER-MBCE <0T 1ID:22 :0ENERIC-OBJECT-4> ANBIGUITY-ISTERVAL-PROSLEN-VITR-BLOB
<TRAX-RABGE-BLOD R:26/157> BLOD-NAS-THE-EXTRA-PIECE 1-T0-1 CASE-6)

Creatiag 0T <OT ID:41 :GENERIC-OBIECT-23> for regiea CTRAX-RABGE-BLOD R:26/187>.

This fragment indicates two things: First :GENERIC-0BJECT-4 (referred to as object 1 in
Figure 6) was missed (not seen as expected) but could be explained (MBCE) by an ambiguity
interval problem in the processing of blob 25 in image 157. Second, the system also starts a
new object tracker (OT for :GENERIC-OBJECT-23) as a competing hypothesis that needs to
be resolved in later processing. Because the original object :GENERIC-OBJECT-4 was seen
again in images 158 and 159, and because :GENERIC-0BJECT-23 is not matched, the newly
created object is quickly eliminated, with the explanation being that its creation was indeed
an artifact.

Object 2 (the thistle bush to the left of object 1 in Figure 6) is an example of a single
object splitting (third image) and then merging again. In order to build a robust model of
the environment the prograin must be able to handle situations such as these. Again, the
TraX system handles these ambiguities by generating competing hypothesis and resolving
them with the processing of additional data. The density of these events in this short
sequence is higher than usual, but they are typical of the events that occur in our analysis
of hundreds of images.

In the future we plan to expand the list of possible explanations. As we understand
more of the fundamental properties of objects and more about the behavior of the analysis
procedures we can implement more explanations, increasing the competence of the system.

3.2 Stability in integration

Once we have determined an object is real, we have a set of techniques for generating
3-dimensional descriptions. The simplest uses a “3D-BLOB” analysis which describes an
object according to its position, size, and, potentially, surface texture. Initial 3-dimensional
analysis of a blob establishes an object-centered coordinate system and then computes a
3-dimensional scene location for the object. The object centered frame allows for the inte-
gration of information about the shape of the object to be decoupled from the compiling
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of information about the location of the object. The actual representation of this new
“3D-BLOB?” is an ellipsoid whose parameters of position and size are updated using stan-
dard Kalman filtering techniques. Critical to this integration is knowledge of the noise
characteristics of the sensor.

When more precise range data are available, we can compute 3-dimeusional part models
using one of two representations: superquadrics and “sticks.” These representations support
a class of inferences about objects that are not supported by the blob descriptions, namely
those requiring a structured shape description.

Superquadrics are weil suited to describing shapes composed of compact parts [Pentland,
1986a; Pentland and Bolles, 1988]. The technique we use to compute superquadric models
of objects is a modified version of the algorithm described in [Pentland, 1986b]. We first
compute a “minimal cost covering” of the range pixels by executing a coarse global search
over the superquadric parameter space, and then optimize the model by gradient descent.
We have found this technique adequate for modeling simple objects such as rocks, but have
not exercised the algorithm enough to evaluate it fully.

When objects are composed of thin pieces, as are fence posts and thistle bushes, the
response of the range sensor tends to “fatten” the parts by generating mixed pixels along
the sides. This blurring prevents the superquadric algorithm from finding the true stick-
like description. To model these thin objects we have designed a special representation we
call “sticks.” By definition sticks appear as one-pixel wide lines in range images. Thus,
to compute a stick model of an object, we first thin the range image of the object, and
then compute a minimal covering in a manner analogous to superquadrics. The stick model
representation is used in the bush example presented later in this paper.

Figure 7 displays the results of applying the stick-fitting procedure to a detected object.
Each model is computed independently making no use of the previous solution. Note that
most of the resulting models capture some structure of the bush. However, except for the
last one, none captures all of the structure. The principal problem associated with these
fitting techniques is the lack of data to constrain the models. As a result, there are often
many descriptions that characterize an object equally well. As with obstacle detection, we
rely on processes monitoring the stability of computed descriptions to filter out those that
are not valid.

To integrate stick descriptions over time, we employ a method similar to that previously
discussed for tracking of 2D-BLOBs. In this case, however, new sticks computed from
the data are matched to model sticks that are being refined with each image. Model
refinement requires three stages: First, model sticks that are matched by new sticks are
reinforced in terms of their stability, and their parameters are updated using standard
Kalman filtering techniques; the state variables estimated are the endpoints of each stick
[Ayache and Faugeras, 1987] and we use our model of the sensor and its noise characteristics
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Figure 7: Computing stick descriptions of a thistle bush. The column on the left displays the
silhouette of the object as determined by the obstacle detection procedure; the middle column is the
thinned version of these objects. The right column displays the best “stick™ model of the the thinned
bush as computed independently for that one image. Note that some of the sticks are quite robust,
such as the vertical stick on the right. Others are less stable, while some are artifacts. Though the
fitting technique can be improved, our goal is to use temporal stability to compute a more robust
model.




Bobick and Bolles 19

V Y

s \A
Figure 8: Sticks computed independently (left column) and tracked over time (right column). As
a stick becomes stable it is added to the model on the right.
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to estimate the variance of the new measurements. Second, unmatched new sticks cause
the formation of model sticks that are initialized from the data; these sticks are searched
for in subsequent images. Finally, sticks that were initially detected but not matched
again are eventually discarded as an artifact of the stick-fitting procedure, unless there
exists some explanation as to why the stick should not be matched. Currently, we include
only one explanation that allows an unmatched stick to remain as a viable part of the
representation: the vehicle has backed away from the object and the individual stick may
no longer be detectable by the sensor.

Figure 8 shows an example of the stability analysis applied to sticks. On the left is the
stick description computed independently using the single range image as input. On the
right is the set of stable sticks tracked over time. A new stick is added to the model on the
right only after it has been deemed stable. Note that the stable description converges to
(what is known to be) an accurate model of the bush.

4 Hard Problems

4.1 Quasi-stability

In our approach to temporal integration, temporal stability of a description is the primary
indicator of reliability. The basic assumption of this strategy is that for eack appropriate rep-
resentation there is a unique, correct description of an object and that commonality across
independently computed descriptions reflects valid aspects of those descriptions. However,
the appropriateness of this assumption depends upon the match between the objects in
the domain and the representations. Consider, for example, the image of an object shown
in Figure 9. In this case, describing the object as a two-stick ‘X’ or as a three-stick ‘H’
is equally correct. And, stability cannot disambiguate between these models because they
may each occur periodically; such an occurrence leads to two competing stick models, each
of which is “quasi-stable.”

While we do not have a complete solution to this problem, we can avoid most of these
difficulties in the TraX system by keeping track of competing hypotheses. Thus, the system
could maintain two or more descriptions of an object in one representation, and clearly
mark them as alternatives. If asked to assert or predict a property of this object (such as
appearance from some viewing direction) the system would have to decide which descrip-
tion or which combination of descriptions it should use, just as it does now when answering
a task-level request about an object that has muitiple descriptions derived from different
representations. While this remedy may be adequate for many problems, it is clearly un-
satisfactory for situations in which there are many quasi-stable descriptions of an object.
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Figure 9: A thin object equally well described as & as a two stick ‘X’ or as a three stick ‘H’. Stability
analysis cannot be used to resolve the ambiguity.

4.2 Dynamic worlds

In the TraX system, the scene is assumed to be static: other than the vehicle, objects do not
change their location, orientation, or shape. What are the issues in extending our approach
to a dynamic environment?

One response is to simply model the dynamics of the environment. In this case variables
such as velocity and acceleration become additional parameters of the representation; aside
from incorporating these new variables into the prediction mechanisms, the approach to
temporal integration remains the same. In this case however, stability becomes much harder
to assess. If an object is moving (e.g., a rotating windmill) how does one determine that the
shape description computed is stable, implying that the description is valid? Presumably,
an understanding of the dynamics would need to be included in the model itself.

Another issue raised by a dynamic environment concerns the matching of known objects
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to objects detected in the data. If an object can change in location, orientation, and shape,
how does one determine correspondence? Without digressing into a philosophical discus-
sion of ontology or Lincoln’s axe,* we must consider how to insure that one is integrating
information about the same object. One insight to this problem is derived from the work
on motion analysis developed by one of the authors [Baker and Bolles, 1989] where the
temporal sampling rate is great enough that all transitions over time are smooth respect to
the data. Thus, for example, tracking the movement of an object, such as a person’s arm,
is simplified because the object can be easily tracked from frame to frame. That approach
requires that the data sampling rate be high enough to smoothly sample the dynamics of
the domain. .

4.3 Explanations and Hallucinations

In this paper we have made the claim that increasing the number of explanations that the
system may invoke to explain why the actual sensory data deviated from predicted data
increases the overall competence of the system. The intuitive argument supporting this
claim is clear: the greater the number of important events that the program can diagnose,
the less likely the data are to confuse the model construction process.

However, one must be aware that if the system has enough explanations, then the system
can find an explanation for anything. As an extreme example, suppose the explanation “The
sensor is completely broken and the incoming signal is independent of the world.” is part of
the knowledge base of the system. Then any data may be explained by such a statement,
and no useful modeling occurs.

To avoid such confusions we have to resort to the idea of dest explanation, where best
means most likely according to some a priori model of the world. This approach is the
same as adopted by researchers employing minimal encoding strategies to select the best
description of a scene; examples include segmentation {LeClerc, 1990] and part: descriptions
[as done here and Pentland and Bolles, 1988].

To date, we have avoided addressing this problem by placing stringent preconditions on
the invocation of most explanations. These conditions are strong enough that if they are
satisfied, we are willing to state categorically that the explanation is appropriate. In the
few instances of shallow model explanations where strong preconditions do not exist, the
requirement that the weak conditions remain true over an extended period of time prevents
the explanations from becoming too widely applied.

40ld joke: A farmer displays an axe over his mantle with s sign that read "Abe Lincoln’s Axe.” When a
skeptical visitor enquired about its suthenticity the farmer replied: “Yup, it sure is Lincoln’s axe. I've
had to replace the handle twice and blade once, but it’s old Abe’s.”
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5 Summary

We have described a new representation paradigm that supports concurrent evolving de-
scriptions of an object. Our rationale for developing this paradigm is as follows:

¢ Multiple, concurrent descriptions are required for two reasons: (1) to describe the wide
variety of objects that occur in complex domains, such as the outdoor world, and (2)
to efficiently support the inferences required by a collection of task modules, including
object tracking, path planning, obstacle detection, and landmark recognition.

o Not all representations are appropriate for every detected object. Sometimes the data
are not sufficient to support the representations. And sometimes the representations
are simply not appropriate for the object, such as a fractal model of a hippopotamus.
Therefore, to restrict the application of representations to appropriate objects, we
introduce the idea of a representation space, which imposes a partial ordering on the
set of available representations.

o For applications in which a continuous stream of data is available, the descriptions
of an object can evolve in two ways. First, the parameters of a representation can
be refined by filtering techniques as new data are acquired. And second, if the data
improve over time, new descriptions can be added, when they are supported by the
data.

o Temporal consistency across independently computed descriptions of an object is a
strong indication of the validity of the descriptions. If the same description is com-
puted from several images in a row, there is a high probability that the description
captures a real structural aspect of the object.

o Since there are many reasons for a description to change from one image to the
next, the idea of temporal stability can be significantly enhanced by the addition of
explanations that account for the problems and special cases that invariably arise in
the processing of real imagery. The sources of explanations range from deep models,
such as the physics of the sensor, to shallow models, such as the probability that a
low-level procedure makes a mistake.

The ability to change an object’s description incrementally and to build a temporally per-
sistent, yet consistent model of the environment is crucial in autonomous navigation tasks:
objects are viewed many times, from different viewpoints, and with different resolutions. By
continually updating the objects’ descriptions, a robot is in a position to base its decisions
on the most current information at all levels.
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1

It is generally accepted that human levels of performance in image understanding will
require the use of massive computational resources as well as the representation and
use of massive amounts of domain knowledge. We believe that continuing advances
in computing technonology are likely to provide adequate computational resources,
but that progress will be limited by our ability to apply knowledge of the domain
eflectively. There are many kinds of knowledge that must be exploited to automate

SRI IMAGE UNDERSTANDING RESEARCH IN
CARTOGRAPHIC FEATURE EXTRACTION

Lynn H. Quam and Thomas M. Strat

Artificial Intelligence Center
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025

Abstract

This paper describes image understanding research at SRI International
in the area of computer assisted extraction of cartographic features. Several
techniques that are well-suited to semi-automated photo-interpretation are
described. These algorithms and others have been implemented within the
framework of the Cartographic Modeling Environment, a highly capable, in-
teractive programming environment that has been designed to facilitate the
construction of image understanding systems.

Introduction

feature extraction, including:

e Physics of the imaging process. This includes the geometry and photometry

of illumination source, surface materials, atmospheric effects, and sensors.

Geometry and photometry of specific objects. The shape and appearance of
objects that arc to be identified and measured must be modeled, including
allowance for variations in imaging conditions and seasons of {":e year. This
must include the capability to distinguish objects of interest from other objects

in the scene.

Spatial relationships and constraints between objects. The classification of
many objects depends upon contextual constraints, which must be exploited
by automated feature extraction algorithms. For example, the facts that rivers
flow downhill and *that - Lads (particularly railroads) generally have steepness

constraints are vital to the development of reliable recognition techniques.
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It is our belief that totally automated cartographic feature extraction is so far be-
yond the current state of the art that near term payoffs must be based on approaches
involving man/machine cooperation. In our research, we endavour to achieve a
range of intermediate goals, starting with computer aids to improve the productivity
and/or accuracy of manual techniques, and extending to operator-guided application
of specialized semi-automated and automated techniques.

In this paper we present a few techniques for extracting specific classes of features,
discuss the kinds of knowledge they exploit, and discuss their limitations. We then
present a computational framework we have developed which allows one to build
comprehensive feature extraction systems that exploit geometric knowledge easily
and effectively.

2 Semi-Automated Feature Extraction Examples

In this section we provide a sampling of research results aimed at automating carto-
graphic feature extraction, drawing primarily from those that have been developed
through the years at our own laboratory. The techniques we have chosen to include
span the range from those that exploit almost no domain knowledge, but have a
wide range of potential application, to techniques that exploit increasingly more
specific domain knowledge, but have a rather limited range of application.

2.1 Scene Partitioning

It is often desirable to group pixels into coherent regions as a precursor to providing a
semantic description of features in a scene. Partitioningis the process of segmenting
an image into regions that are homogeneous in some set of local attributes, such as
intensity, texture, or color.

The scene partitioning task can be formulated as a Minimum Description Length
(MDL) optimization problem {S]. In this formulation, the quantity to be minimized
is the complexity of describing an image in a given Janguage, where complexity is
defined as the number of bits in the description. The choice of language reflects
prior knowledge of the class of scenes and noise processes in question, and how they
are combined into a final image.

One such language was designed for a simple yet very general class of scenes (in-
cluding, e.g., aerial images of urban areas) in which all objects are approximated by
piecewise-smooth surfaces with piecewise-smooth coloration, and for which the noise
process is modeled as additive uncorrelated Gaussian noise with piecewise-constant
variance. The resulting language partitions an image into regions whose intensity
is described by a low-order two-dimensional polynomial and whose boundaries are
described using a chain-code.

The search for the simplest description uses a finite-element grid to represent
the underlying image (i.e., the two-dimesrésional poiynomials and their boundaries).




Figure 1: Example of Leclerc’s partitioning results.

Each element of this grid represents a polynomial within a unit square.

With this representation, the objective function (overall complexity) can be writ-
ten as the sum of spatially local terms that involve only the polynomial coefficients
of an element, those of its four neighbors, and the pixels of the given image. Finding
the vector of coefficients that minimizes this objective function is difficult because
the objective function has exponentially many local minima, so that standard op-
timization techniques cannot be used. Leclerc has devised an approximate solution
technique based on a general approach called a “continuation method.” An example
of a partitioning produced by this approach is shown in Figure 1. The formulation
has no specific knowledge of the characteristics of features in the scene, except the
assumption that features of interest appear as piecewise-smooth regions in the im-
age. The generality of this model allows the approach to be used to extract many
different features in widely varying imagery.

Intuitively, the partitioning process greatly reduces the amount of information
needed to describe the image. The remaining challenge is to devise techniques to
extract the desired features from the resulting partitions. One near term approach
is to use a human to guide the interpretation process.

2.2 Low-Resolution Road Tracking

At low resolution (defined here to be 1 or 2 pixels for the entire width of the road),
roads are often indistinguishable from other linear features appearing in the image
including artifacts. such as scratches. Thus, the low-resolution road tracking prob-
lem largely reduces to the general problem of line (as opposed to edge) following.
Nevertheless, there are still some weak semantics that can be invoked to specifically
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Figure 2: Low-resolution road segment extraction. (a) Intensity image of road scene.
(b) Perfect road score mask (PRS) of image (derived from scores of local operators
described in [1]. (c) Minimum spanning trees for all clusters of PRS. (d) Maximum
paths through minimum spanning trees with length greater than 60 points for all
clusters.

tailor a system for road tracking, trading some generality for significant increases in
performance.

The basic paradigm employed by Fischler et.al., [1] is to first evaluate all local
evidence for the presence of a road at every location in the search area, and then
find a single track which, while satisfying imposed constraints (such as continuity).
optimizes the sum of the local evaluation scores (costs) associated with every point
along the track. Figure 2 illustrates the approach. The results of this automated
approach can be edited interactively to improve the quality of the product. Such
a semi-automated process promises to be more efficient and more accurate than a
purely manual extraction.

A major component of the approach, the F* algorithm described in Fischler
et.al.. [1], iteratively finds an optimal path in an image 1rom a starting pixel to
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Figure 3: Example of Quam’s correlation-based road tracker results.

a terminating pixel. The 2-D image array is considered as a graph in which each
pixel is connected by a directed weighted arc to its eight immediately adjacent array
neighbors. The pixels and arcs have an associated cost that reflects their local
likelihood of belonging to the optimal path, i.e., the path with minimum cost. The
track with the highest normalized ranking is selected as the primary road track
through the given region. The starting pixel and terminating pixel, as well as a
search region, can be selected interactively or from a map data base.

2.3 High-Resolution Road Tracking

In Quam’s procedure [9) for tracking roads and detecting potential vehicles in aerial
images, a context-adapting heuristic search method is used to support a dynamically
changing model of road photometry. Figure 3 shows an example.

Successive road intensity cross-sections (RCS) taken perpendicular to the direc-
tion of the road show'a high degree of correlation, which suggests that road tracking
can be accomplished by using cross-correlation (template matching between the
road cross-section intensities, and a road cross-section model). Deviations from the
mode] indicate anomalous pixels such as road patches, road markings, occlusions,
and vehicles. The location of the correlation peak was used to maintain alignment
with the road center and to generate a model for the road trajectory. However, this
approach turned out to be suboptimal because anomalies perturb the correlation
peak causing small, cumulative alignment errors.

To overcome these problems, four refinements were introduced:

o Cumulative road cross-section mode]
e Trajectory extrapolation

¢ Anomaly detection
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e Masked correlation

Instead of aligning consecutive RCSs, each RCS is aligned with a cumulative
RCS model, based on an exponentially weighted history of previously aligned RCSs.
Parabolic extrapolation of past correlation peaks is used to predict the future road
trajectory. The predicted trajectory is used to guide the tracker past areas where
the correlation peak is unsatisfactory. Anomalies are detected by comparing the
aligned RCS with the RCS model. Corresponding pixels that significantly disagree
are marked as potential anomalies. The cross-correlation is then repeated, masking
out the anomalous pixels to obtain a more accurate alignment.

This algorithm uses a more complex model of road appearance than that em-
ployed by the low-resolution road tracker described in Section 2.2. This model
allows it to successfully extract roads in high resolution photography in which low-
resolution road trackers usually fail.

2.4 Optimization-Based Feature Extraction

In most images, object boundaries cannot be detected solely on the basis of their
photometry because of the lack of a precise object model, the presence of unknown
objects, and the presence of various photometric anomalies. Thus, all methods
for finding boundaries based on purely local statistical criteria are bound to make
mistakes, finding either too many or too few edges (usually depending on the choice
of arbitrary thresholds).

To supplement the weak and noisy local information, Fua and Leclerc consider
the geometrical constraints that object models can provide [2]. A boundary is de-
scribed as an elastic curve with a deformation energy derived from the geometrical
constraints, as suggested by Kass ef.al. {6]. Photometric constraints are incorpo-
rated by defining photometric energy as the average of the edge strengths along the
curve. Local minima in this energy correspond to boundaries that best match the
photometric model. A candidate boundary can be found by deforming the curve in
such a way as to minimize its total energy, which is the sum of the deformation and
photometric energies. Once a curve has been optimized, i.e., once it has settled in
a local minimum of the total energy (which is, in effect, a compromise between the
two constraints) more detailed object models can be used to determine if the curve
actually corresponds to an object boundary.

Such energy minimizing curves. sometimes called “snakes,” have two key advan-

tages:
o The geometric constraints are used directly to guide the search for a boundary.

e The edge information is integrated along the entire length of the curve provid-
ing a large support basis without including the irrelevant information off the
curve.
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Figure 4: Example of the use of energy minimizing curves. (a) Aerial photo of a
suburban scene. (b} Road boundary computed by Quam’s correlation-based road
tracker. (c) Optimized road boundaries using (b) as one of the initial conditions.
(d) Vegetation boundaries extracted by closed-curve snakes.

Taken together, these advantages allow energy minimizing snakes to find photomet-
rically weak boundaries that local edge detectors simply could not find without also
finding many irrelevant boundaries.

This approach is used to extract a variety of curvilinear features, including roads
(as illustrated in Figure 4c), sidewalks, rivers, and skylines. A variant of the ap-
proach utilizing closed curves can be employed to extract closed regions, such as
vegetation boundaries (as in Figure 4d), lakes, and rooftops.

Techniques of this type can be effectively used to improve the precision and
reduce the tedium associated with manual boundary extraction, by allowing the
human to coarsely delimit a boundary using 2 minimum number of points, and
allowing the optimization procedure to refine it.
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Figure 5: Example of building extraction. (a) Aerial photo of an urban scene. (b)
Edges have either of two principle orientations. (c) Wire-frame model constructed
semi-automatically. (d) Synthetic scene generated from (c).

2.5 Building Extraction

Automatic recognition and delineation of important cartographic objects, such as
man-made structures, from aerial imagery is addressed by Fua and Hanson (3].
The basis for their approach is a theoretical formulation of object delineation as an
optimization problem; practical objective measures are introduced that discriminate
among a multitude of object candidates using a model language and the minimal
encoding principle, MDL. This approach is then applied in two distinct ways to the
extraction of buildings from aerial imagery: the first is an operator-guided procedure
that uses a massively parallel Connection Machine implementation of the objective
measure to discover a building in real time given only a crude sketch [4). The
second is an automated hypothesis generator that employs the objective measure
during various steps in the hypothesis-generation procedure.
As described by Suetens, et.al., [11):

To generate optimal descriptions, a hierarchical procedure carries out
the following steps: (1) Extract edges with the appropriate geometry; (2)
Find elementary geometric relationships between edges (such as corners
or parallels); (3) Build closed cycles of related edges that enclose ar-
eas with acceptable photometric and geometric properties: (4) Invoke a
contoL. completion procedure that generates closed contours. optimizes
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their location and computes their elevation. (5) Select the highest scor-
ing contours. '

Each parsing step is designed as a filtering process that both enforces
some model constraints and limits the size of the search space, thereby
preventing combinatorial explosion of the search. Multiple knowledge
sources (edge data, interior pixel intensities, stereographic information,
shadow information, and other geometric constraints) are combined to
build and rank hypotheses for generic objects of arbitrary complexity,
such as the one shown in Figure 5.

The building model employed makes use of implicit constraints on the perpen-
dicularity of roof edges, verticality of walls, and the homogeneity of regions corre-
sponding to rooftops. These attributes are best expressed in terms of constraints on
the 3D geometry of the building rather than constraints on the 2D geometry in the
perspective projection of the building seen in the image. Tne Cartographic Model-
ing Environment, with its perspective camera models and accompanying geometric
transformations allows these 3D constraints to be enforced with a minimal burden
on the programmer.

3 Cartographic Modeling Environment

The SRI Cartographic Modeling Environment (CME) has been developed to support
research and software development of interactive, semiautomated, and automated
cartographic feature-extraction techniques {5, 10). By carefully integrating image
processing, photogrammetry, 3D computer aided design (CAD) modeling, and 3D
computer graphics technologies, CME provides a rich programming environment for
experimentation and prototype development. CME supports a variety of interactive
facilities for creating, editing, viewing, and rendering three-dimensional models of
physical objects, cartographic features, and terrain. These modeling capabilities
may be used independently or in conjunction with multiple, photogrammetrically
calibrated digital images. Interaction with geometric models is characterized by
intuitive simplicity and by innovative techniques for exploiting geometric and data-
driven constraints in the manipulation process. Synthetic views of a scene may be
constructed from arbitrary viewpoints using terrain and feature models in combina-
tion with photo texturing using photogrammetrically registered imagery. Examples
of the types of imagery, terrain, and object models represented and manipulated by
CME are illustrated in Figure 6.

CME extends the two-dimensional capabilities of the ImagCalc™ image manip-
ulation system to the three-dimensional domain of the real world. The geometric
parameters of terrain, cartographic features, and camera models are defined in a
local rectangular coordinate system which is usually tied to a reference geoid such
as Clarke 1866 or WGSS4. Fach image has an associated camera mode] that defines
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Figure 6: Block diagram of the major components of the SRI prototype cartographic
analysis and display system.

the projection from 3D world coordinates to 2D image coordinates. The inverse pro-
jection from image coordinates to world coordinates is accomplished by intersecting
rays from the camera with 3D terrain and feature models. Conventional stereo tri-
angulation is implemented simply by intersecting the camera rays of corresponding
conjugate points. All ImagCalc operators propagate their geometric transformations
to the camera models of their result images.

The distinguishing features that set the Cartographic Modeling Environment
apart from more conventional CAD systems include:

o Registration of multiple data sources, including stereographic and non-stereo-
graphic images, terrain elevation models, and three-dimensional object models,
to the same world coordinate system. This capability is unique in that it
permits object model entry to be driven by sensor data such as actual images.

o A variety of camera models appropriate to both conventional frame cameras,
and to satellite imaging systems such as SPOT.

o Use of lighting models, terrain elevation data, and other geometric knowledge
to constrain and facilitate data entry. The exploitation of constraints in the
interactive modeling process increases the efficiency of the human operator.

o Registration of local coordinate systems to UTAM. latitude-longitude. and other
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Figure 7: An example of the CME screen showing wire-frame models superimposed
on both real and synthetic imagery.

cartographic coordinate representations. The use of real-world coordinate sys-
tems enables the system to exploit specific world knowledge, e.g., by computing
the sun position for a particular location at a particular time of day.

e Phototexture rendering facilities to synthesize imagery from other perspectivés
and to generate synthetic image sequences (movies). Synthetic image genera-
tion is an essential means for verifying the correctness of extracted features.

o An interactive framework to support computer assisted feature extraction for
cartographic applications.
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4 Summary

Although fully automated digital cartography is far from reality, semi-automated
techniques promise great increases in throughput-and accuracy in the construction
of cartographic databases from aerial photography. We have described five exam-
ples of techniques that appear well-suited for inclusion in an advanced cartographic
workstation. They differ to the degree to which they rely upon models of the fea-
tures they attempt to extract — generally, approaches that employ strong models
have limited application, while those employing weaker models are more widely
applicable but often less robust. A cooperative partnership in which the human
photo-interpreter controls the invocation of suitable algorithms, and in which the
advanced workstation provides facilities to evaluate the results through visualization
and to edit the results through direct manipulation, offers the greatest payoff in the
near term.

The SRI Cartographic Modeling Environment has been designed to support the
interactive construction and use of 3D cartographic databases from both aerial and
ground-level imagery. Its extensive collection of editing and display tools facilitate
experimentation during algorithm development as well as the construction of more
specialized photo-interpretation systems.
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